

This work was supported by National Natural Science Foundation of

China (61501044).

A Load Balancing Mechanism for multiple SDN
Controllers based on Load Informing Strategy

Jinke Yu, Ying Wang, Keke Pei, Shujuan Zhang, Jiacong Li
State Key Laboratory of Networking and Switching Technology

Beijing University of Posts and Telecommunications
Beijing, China

Email: {zjjyjk, wangy}@bupt.edu.cn

Abstract—Software defined networking (SDN) is currently
regarded as one of the most promising paradigms of future
Internet. Although the availability and scalability that a single
and centralized controller suffers from could be alleviated by
using multiple controllers, there lacks a flexible mechanism to
balance load among controllers. This paper proposes a load
balancing mechanism based on a load informing strategy for
multiple distributed controllers. With the mechanism, a
controller can make load balancing decision locally as rapidly as
possible. Experiments based on floodlight show that our
mechanism can balance the load of each controller dynamically
and reduce the time of load balancing.

Keywords—Future Internet; Load balancing; Load informing;
Software defined network (SDN)

I. INTRODUCTION

Software defined networking (SDN) has emerged as a new
and promising paradigm shifting from traditional network to
the Future Internet to offer programmability and easier
management[1]. In SDN, a centralized control plane brings
many benefits such as controlling the network by a central
node and abstracting the underlying network infrastructure
from the applications. However, the single and centralized
controller imposes potential issues of scalability and reliability.
Hence some research works have designed the deployments of
multiple controllers to avoid this bottleneck. Although these
solutions can settle the issue, one key limitation is inevitable
for these solutions: it is hard for the control plane to make an
adaptation to uneven load distribution, when the mapping
between a switch and a controller is statically configured. The
limitation will lead to degraded network performance. So it is
important to handle the issue.

Currently, the research work about load balancing decisions
of multiple controllers can be divided into two categories: the
centralized decision and the distributed decision. For the
centralized decision [2, 3, 4], there are two essential processes:
one is collecting load information of all local controllers and
the other is sending load balancing commands to the local
overloaded controller. Due to these two processes, the time
efficiency of load balancing is not high. For the distributed
decision [5], every controller can make balance decision
locally, so the process of sending load balancing commands
can be omitted. However, the existing distributed decision
method need to collect load information of other controllers
before an overloaded controller can make decision. This
process extends the completion time of load balancing.

In order to make an overloaded controller balanced as
quickly as possible, we propose a load balancing mechanism. It
adopts the distributed decision. Meanwhile, it is based on a
load informing strategy, namely every controller periodically
actively informs its load information. And it also processes and
stores load information informed by other controllers.
Moreover, for reducing the overhead of communication and
processing messages caused by the strategy, an inhibition
algorithm is put forward to lower the frequency of informing.

II. RELATED WORK

The load balancing decisions of multiple controllers has
been studied in [2, 3, 4, 5], which can be divided into two
categories: the centralized decision [2, 3, 4] and the distributed
decision [5].

The authors of [2, 3] propose ElastiCon, which includes a
logically centralized load adapter responsible for balancing
load among controllers in a controller pool. In the deployment
of [4], there is a coordinator controller to be responsible for
maintaining a global controller load info table. According to
the table, the controller decides whether to balance the load
among controllers. The centralized decision [2, 3, 4] can settle
the issue of uneven load distribution among controllers.
However, they two essential processes, namely collecting load
information of all controllers and sending load balancing
commands to the overloaded controller. These two processes
extend the time of load balancing.

The authors of [5] propose DALB, which allows every
controller can make load balancing decision locally. For an
overloaded controller, before it makes balance decisions
locally, it will collect load information of all other controllers.
However, due to the process of collecting, the time efficiency
of load balancing is not high.

To reduce the delay caused by these processes, we put
forward a load balancing mechanism. Firstly, the mechanism
allows controllers can make decisions locally. Secondly,
different from the above process of collecting in DALB [8], we
propose a load informing strategy: each controller periodically
actively reports its load information to other controllers. It also
handles and stores load information informed by other
controllers. So an overloaded controller no longer collects all
other controllers’ load information before make decisions
locally. Thirdly, an inhibition algorithm is proposed to lower
the frequency of load informing for reducing the processing
and communication overhead caused by the informing strategy.

© Copyright IEICE – The 18th Asia-Pacific Network Operations and Management Symposium (APNOMS) 2016

III. ARCHITECTURE OVERVIEW

The architecture of our proposed distributed decision is
shown in Fig. 1. In this architecture, the relationship of
controllers and switches is many-to-many, which is supported
by OpenFlow 1.3 [6] or its higher version. The
communication and coordination of control plane is based on
JGroups [7]. Our proposed load balancing mechanism is
running as a module of each SDN controller in this
architecture, named as load balancing module. This module
includes four components: (1) load measurement is used for
measuring load metrics and judging whether the load of a
controller exceeds the threshold, (2) load informing is
responsible for a local controller sending its load information
to other controllers, (3) balance decision is in charge of
making load balancing decisions, (4) switch migration is liable
for shifting the selected switch to balance the load among
controllers.

Fig. 1. The architecture of the proposed distributed decision

The load balancing module on each controller cooperates
with one another to balance the controller load by running the
above four components. Firstly, the load measurement
component periodically measures load metrics and checks
whether the controller’s load exceeds the predefined threshold.
Secondly, if the load is under the threshold, the load informing
component will judge whether the controller needs to inform
its load information to other controllers. If not, the balance
decision component makes load balancing decision locally,
like selecting appropriate switches to migrate and choosing
light-loaded controllers as target controllers to accept selected
switches. Thirdly, the target controller determines whether to
accept these switches. If so, these switches are migrated to
their target controllers. Finally, after completing the migration,
the controller updates its load information and reports it to
other controllers via the load informing component.

IV. DESIGN AND IMPLEMENTATION

A. Load Measurement component

The load measurement component runs on each controller to
periodically measure load information. In this paper, we
choose two metrics for load balancing decision. They are the
average message arrival rate (I) from each switch and the
round-trip time (R) from each switch to controller. CPU is
typically the throughput bottleneck of a controller, and the
CPU load is roughly in proportion to the message arrival rate.
As a result, we calculate the total message arrival rate to
represent the load of a controller. Besides, since the round-trip

time is an important factor to evaluate the performance of
control path, it will be considered as one parameter when
selecting the target controller. Here, we assume that the
connection between a controller and a switch is in the in-band
mode, so the round-trip time R could be measured by the
number of hops from the controller to switch.

B. Load Informing component

With the proposed load informing strategy, each controller
can periodically actively reports its load information to other
controllers. And it also handles and stores the load information
from others. While the periodical active load informing can
decrease the decision delay, it also causes additional processing
and communication overhead in the control plane. Especially,
when the current load value does not change much compared
to the last value, reporting it to other controllers is a redundant
operation. To reduce these overheads, we put forward an
inhibition algorithm to reduce the frequency of load
information notification. This algorithm is outlined in
Algorithm 1.

Algorithm 1 the inhibition algorithm
Input: : Current load value : Former load value { = , , , … , , … , = } , and −< − , ≥ , ≥ , n is an odd number:
the number of segments
Output:

True or False: Informing load information
1: Value = False
2: if(<) then
3: for (: → −)
4: if(≥ && <)||(<&& ≥))
5: Value = True
6: break
7: end if
8: end for
9: =
10: end if
11: return Value

In this algorithm, the current load value of a controller
collected by the load measurement component is denoted as

 and the load value measured last time is denoted
as 	 . Meanwhile, we divide the scope from 0 to the
threshold value into several segments, such as the segment of 	to	 . When and are in the same segment,
namely: ≤ , ≤ , a controller will not
inform its load information to other controllers. So the
controller does not always report its load information after
periodically collecting load metrics. However, such inhibition
algorithm may lead to a deviation between the current load
value and the load value stored by other controllers. If the load
of a controller is low, when the controller is selected as the
target controller to accept some load of a high-load controller,
the deviation has no significant impact on this controller
because the controller has enough capacity to accept the
migrated load. However if the load of a controller is high, the
deviation can cause the controller become a new heavy-loaded

controller after accepting the migrated load. In order to avoid
such situation, we make the lengths of the segments decrease
progressively, namely: − < − , ≥ .
In such way, a controller whose load is close to its threshold
will release its load information more frequently to reduce the
deviation.

C. Balance Decision component

The balance decision component firstly judges whether an
overloaded controller is the heaviest overloaded controller
among all controllers. Then it decides which switches should
be selected to be migrated and which controllers should be
selected as the target controllers to accept the chosen switches.

1) The heaviest overloaded controller judgment
In the process of load balancing, another problem is

inevitable. If two or more controllers exceed their load
thresholds, they will take migration operation simultaneously.
If these overloaded controllers select one same controller as
the target controller to accept the chosen switches, the
controller may become a new overloaded controller. To settle
the above issue, we come up with selecting the heaviest
overloaded controllers among overloaded controllers to be
balanced during each load balance cycle. For the selection of
the heaviest overloaded controller, we propose the following
formula (1) named the overload proportion formula. When the
overloaded proportion of a controller is the biggest, the
controller is regarded as the heaviest overload controller. If
there are several such controllers, we determine that the
controller with the maximum current load is the heaviest. If
these two values are still equal for several controllers, we will
choose one of them randomly.

 		 = 	 − ℎℎ (1)

 denotes the current load value of a controller and ℎ is the load threshold of the controller. 		 is the
overload proportion of an overloaded controller.

2) Switch selection
After selecting the heaviest overload controller, we choose

switches to be migrated. From part A, we can obtain the
average message arrival rate (I) from each switch. The bigger
the average message arrival rate is, the switch brings more
load to its controller. In order to release the load of the
overloaded controller as fast as possible, we preferentially
select the switch with high message arrival rate. If one
selected switch with high arrival rate can reduce the load of
the controller to be under the threshold, the switch selection is
finished. If not, the above switch groups with another switch
with high arrival rate as the migrated switches and so on. So
we sort the switches controlled by the overloaded controller in
descending order with their message arrival rate. 		 = sort{ } (2)

 is the average message arrival rate of the switch with ID. 		 is a switch set sorted by I in descending order.

When choosing the switch, we also define a constraint
formula (3). We ensure that the migrated load is not
more than 1/ 	 of the difference between load threshold

ℎ of the target controller 	 and the current load
value	 .

 ≤ (3)

We search the sorted switch set 		 to find one switch
group satisfying constraint (3) to be migrated.

3) Target controller selection
A switch can connect to one master controller and several

slave controllers. For each switch in the selected switch group,
there is a possible situation that multiple slave controllers can
accept it. It is desired that the lightest-load controller among
these slave controllers is selected as the target controller to
accept the switch. However, when the round-trip time between
the target controller and the selected switch is the biggest
among those from the selected switch to other slave
controllers, the performance of control path is not high. So we
consider both the load condition of a slave controller and the
round-trip time from the selected switch to the controller,
when we choose a target controller. The selection formula is
as follow: = × ℎ − − × (4)

R denotes the round-trip time. Both and are weight
coefficients, and the sum of them is 1.0. is regarded as
a criterion for selecting the target controller. The slave
controller with the largest will be chosen as the target
controller. If there are several such controllers, we will choose
one of them randomly.

D. Switch migration component

When two or more controllers become overloaded at the
same time, because of the load informing strategy, each high-
load controller may judge itself the heaviest controller before
receiving load messages of other controllers. And they may
choose the same target controller. This may lead to migration
conflict and the overload of the target controller. To avoid such
situation, during a switch migration cycle, a target controller
only accepts overloaded controllers’ one switch migration
request. When the target controller accepts a migration request,
the process of the switch migration is as follow.

Firstly, the heaviest overloaded controller () triggers
switch migration by sending a switch migration request
message to the target controller () through JGroups. Then, 	sends a ROLE_REQUEST message to the selected switch
() for changing its role to equal. After replies the
ROLE_REPLY message to , informs that its role
change is finished. When the completion of the role-change
process, controller B can also receive asynchronous messages
from . Secondly, cannot become the slave immediately
from managed because there may be unfinished request at 	before receiving the reply for migration from . So
continues to interact with to complete undone work until it
sends “end migration” to	 . Thirdly, after receiving the end
migration message, 	changes its role from equal to master by
sending a ROLE_REQUEST message to . And sets to
slave. Finally, both controllers update the stored controller-

switch mapping synchronically. The whole switch migration
process is completed.

V. EVALUATION

In this section, we implement the distributed OpenFlow
controller based on Floodlight [8]. Our proposed load
balancing mechanism runs as one of its modules. We choose
Mininet [9] to emulate a network of software-based virtual
OpenFlow switch as our experimental testbed. In our test, we
use two controller nodes to deploy a distributed SDN network.
We configure 4 switches to connect controller A as master and
controller B as slave, meanwhile, another 4 switches to connect
controller B as master and controller A as slave.

A. Throughput

We use Cbench [10] tool to measure the maximum rate in
which Packet-In messages are handled by Floodlight based on
our physical hardware. The result is an average rate of 12758
Packet-In messages per second (pps). In order to execute load
balancing, at one time, we injected 5000 pps to controller A
and 16000 pps to controller B. we plot the throughput of our
proposed mechanism as illustrated in Fig. 2. Compared with
our method, we also measure and plot the throughput when the
switch-controller mapping keeps static.

As Fig. 2 shows, in static mapping model, the total average
throughput of controllers is lower than that in the proposed
mechanism under our workload (the total Packet-In messages
injected by us per second). That because the variance of
Packet-In requests leads to load imbalance among controller A
and controller B, controller B is overloaded and Packet-In
messages begin loss due to buffer overflow. In proposed
mechanism, when controller B overloads, load balancing is
triggered. Controller B dynamically shifts partial load to
controller A. The load, imposed on controller A, is still below
the processing capability of controller A, so the total
throughput of controllers gets increased.

Fig. 2. Distributed Controllers’ Throughput

B. Completion time

When we evaluate the completion time of our proposed
mechanism at a load balancing cycle, we set the threshold
values of controller A and controller B to 10000 pps and
11000 pps respectively. Once controller A or controller B
exceeds the respective threshold, it needs to shift partial load
to the other controller. We plot the result in Fig. 3.

As Fig. 3 shows, from 0s to 45s, the load of both controllers
is smaller than the respective threshold values. At the time of

50s, we increase the Packet-In messages arrival rate of
controller B. Then the load balancing module detects the load
of controller B exceeds its threshold and makes a decision. So
the selected switch is migrated to controller A. At 55s, the
load of controller B comes down and controller A comes up.
The load balancing is completed within 5s. This completion
time is acceptable.

Fig. 3. Load balancing’s completion time

VI. CONCLUSION AND FUTURE WORK

The uneven load distribution is an inevitable issue in
deployment solutions of multiple controllers. To settle this
issue, we propose a mechanism based on load informing
strategy to balance the load among controllers and reduce the
time of balancing. The results of evaluation demonstrated that
our mechanism can achieve the above two aims. In the future,
we will continue with the optimization of our proposed load
balancing mechanism, with the focus on optimizing Load
Informing component and Balance Decision component. In
addition, we intend to implement our load balancing
mechanism among multiple heterogeneous SDN controllers.

REFERENCES
[1] “The open networking foundation,” https://www.opennetworking.org/,

[Online; accessed May 16, 2015].

[2] Dixit, Advait, et al. "Towards an Elastic Distributed SDN Controller."
Acm Sigcomm Computer Communication Review 43.4(2013):7-12.

[3] Dixit, Advait Abhay, et al. "ElastiCon: an elastic distributed sdn
controller." Proceedings of the tenth ACM/IEEE symposium on
Architectures for networking and communications systems ACM,
2014:17-28.

[4] Liang, Chu, R. Kawashima, and H. Matsuo. "Scalable and Crash-
Tolerant Load Balancing Based on Switch Migration for Multiple Open
Flow Controllers." Second International Symposium on Computing and
Networking (CANDAR'14) 2014:171 - 177.

[5] Zhou, Yuanhao, et al. "A Load Balancing Strategy of SDN Controller
Based on Distributed Decision." Trust, Security and Privacy in
Computing and Communications (TrustCom), 2014 IEEE 13th
International Conference on IEEE, 2014:851-856.

[6] Open Networking Foundation, “OpenFlow Switch Specification Version
1.3.3 (Protocol version Ox04),” July 27, 2013.

[7] “JGroups,” http://jgroups.org/, [Online; accessed January 02, 2016]

[8] “Floodlight,” http://www.projectfloodlight.org/floodlight/, [Online;
accessed June 04, 2015].

[9] “mininet,” http://mininet.org/, [Online; accessed June 02, 2015].

[10] “Cbench,” http://sourceforge.net/projects/cbench/, [Online; accessed
January 17, 2016].

0

5

10

15

20

25

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58

T
hr

ou
gh

pu
t (

in
 k

il
o

pp
s)

Run Time (s)

static
proposed
workload

0

2

4

6

8

10

12

14

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

P
ac

ke
t-

In
 a

rr
iv

al
 r

at
e

(i
n

ki
lo

 p
ps

)

Response times (s)

controller A

controller B

